Optoelectronic properties of zinc blende and wurtzite structured binary solids

Optoelectronic properties of zinc blende and wurtzite structured binary solids

TITLE: Application of new modeling and control for grid connected photovoltaic systems based on artificial intelligence

AUTHOR: Alphousseyni Ndiaye; Lamine Thiaw; Gustave Sow

DATE OF PUBLICATION: 29 January 2015

ISBN: 1993-8225

journal1411975305_FRONT

In this paper, we studied zinc blende (ZB) and wurtzite (Wu) type structured binary solids with conduction electrons and calculated the optoelectronic properties such as high frequency refractive index (n), optical susceptibility (χ), electronic polarizability (αe) and crystal ionicity (fi) using the plasma oscillation theory of solids formalism already employed for ternary chalcopyrite semiconductors. The present method is not limited to tetrahedrally coordinated semiconductors and ternary chalcopyrites, but can be used for all semiconducting compounds. We have applied extended formulae on zinc blende (ZB) and wurtzite (Wu) type structured binary semiconductors and found better agreement with the experimental data as compared to the values evaluated by previous researchers. The high frequency refractive index (n), optical susceptibility (χ), electronic polarizability (αe) and crystal ionicity (fi)  of zinc blende (ZB) and wurtzite (Wu) type structure compounds exhibit a linear relationship when plotted on a log–log scale as against the plasmon energy ћωp (in eV), which lies on a straight line. The results for high frequency refractive index differ from experimental values by the following amounts: ZnS (0%), ZnSe (0%), ZnTe (11%), CdS (11%), CdSe (15%), CdTe (20%), HgSe (5%), BN (20%), AlN (16%), AlP (15%), AlAs (0%), AlSb (13%), GaN (18%), GaP (27%), GaAs (8%), GaSb (7%), InN (8%), InP (5%), InAs (0.3%) and InSb (0.9%); and the results for optical susceptibility differ from experimental values by the following amounts: ZnS (10%), ZnSe (2%), ZnTe (8%), CdS (25%), CdSe (17%), CdTe (7%), AlAs (4.8%), AlSb (16%), GaP (1.6%), GaAs (9.8%), GaSb (22.7%), InP (12.8%), InAs (9%) and InSb (20%) in the present study.

Key words: A. semiconductors, D. electronic properties, D. optical properties

D. S. Yadav

Chakresh kumar

Jitendra Singh

Parashuram

Ghanendra Kumar

Ahmed T, Hamza A, Abdel GA (2008). La commande neuronale de la machine à réluctance variable, Rev. Roum. Sci. Techn.–Électrotechn. Énerg. 53(4):473-482. Bucarest.
ANAMS: National Agency for Meteorology of Senegal (2012).View
Branštetter P, Skotnica M (2000). Application of artificial neural network for speed control of asynchronous motor with vector control, Proceedings of International Conference of Košice, EPE-PEMC, pp. 6-157-6-159.
Chen CT, Chang WD, J Hwu (1997). Direct control of nonlinear dynamical systems using an adaptive single neuron, IEEE Trans. Neural Netw. 2(10):33-40.
Cybenko G (1989). Approximation by superposition of a sigmoidal function”, Math. In: Control Signals System 2nd ed, pp.303-314.
Dreyfus G (2002). Réseaux de neurones: Méthodologies et applications, editions Eyrolles.
Hongmei T, Mancilla-Davida F, Kevin E, Eduard M, Peter J (2012). A cell-to-module-to-acell detailed model for photovoltaic panels. Solar Energy 86(9):2695-2706.
CrossRef
Hagan MT, Demuth HB (1996). Neural network design, Thomson Asia Pte Ltd, 2nd ed.
Koh C, Khouzam K, hoon C Ly, Poo Yong Ng (1994). Simulation and real-time modelling of space photovoltaic systems. In Conference Record of the 24th IEEE Photovoltaic Specialists Conference, 2:2038-2041.
Komi GASSO (2000). Identification des systèmes non-linéaires : approche multi-modèle. PhD these Doctorat soutenue en.
Mohammed S, Djamel EC, Fayçal KM (2007). Commande neuronale inverse des systèmes nonlinéaires, In 4th International Conference on Computer Integrated Manufacturing CIP, 2007 03-04 November.
Norgaard M (1996). System identification and control with neural networks”, Thesis, Institute of automation, Technical University of Denmark.
Panos J, Antsaklis K, Passino M (1993). Introduction to Intelligent and Autonomous Control, Kluwer Academic Publishers, ISBN: 0-7923-9267-1.
PSA: Senegalese-German program (2011). DASTPVPS\SOLARIRR.INS.
Ravinder KK, Shimib SL, Chatterjib S, Fahim A (2014).Modeling of solar pv module and maximum power point tracking using anfis. Renew. Sustain. Energy Rev. 33:602-612.
CrossRef
Rival I, Personnaz L, Dreyfus G (1995). Modélisation, classification et commande, Par réseaux de neurones: principes fondamentaux, Méthodologie de conception et illustrations industrielles, Mécanique Industrielle et Matériaux, no 51 (Septembre 1998).
Ronco E, Gawthrop PJ (1997). Neural networks for modelling and control, Techncal Report CSC-97008, Center for Systems and Control, Glasgow.
Tai P, Ryaciotakiboussalis HA, Tai K (1990). The application of neural networks to control systems: A survey, Signals, systems and Computers, Record Twenty-Fourth Asilomar Conference on Vol. 1.
Vandoorn T, Bert R, Frederik De B, Bart M, Lieven V (2009). A Voltage-Source Inverter for Microgrid Applications with an Inner Current Control Loop and an Outer Voltage Control Loop, International Conference on Renewable Energies, and Power Quality (ICREPQ09) Valencia (Spain), 15th to 17th April.
Wofrance (2012). http://www.wofrance.fr/weather/maps/city.
Wishart MT, Harley RG (1995). Identification and Control of Induction Machines Using Artificial Neural Networks. IEEE Trans. Ind. Applic. 31:3.
CrossRef
Yildirim S (1997). New neural networks for adaptive control of robot manipulators, Neural Networks, International Conference, 3:1727-1731.
Zameer A, Singh SN (2013). Modeling and control of grid connected photovoltaic system: A review. Int. J. Emerg. Technol. Adv. Eng. 3:2250-2459.

.

Optoelectronic properties of zinc blende and wurtzite structured binary solids

D. S. Yadav

Chakresh kumar

Jitendra Singh

Parashuram

Ghanendra Kumar

Accepted: 05 March 2012  Published: 31 March 2012

Copyright © 2012 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0
Empty tab. Edit page to add content here.